

Code No: C6105, C6505 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I - Semester Examinations, March/April-2011 DETECTION AND ESTIMATION THEORY (COMMON TO COMMUNICATION SYSTEMS, WIRELESS AND MOBILE COMMUNICATION)

Time: 3hours

Max. Marks: 60

Answer any five questions All questions carry equal marks

- 1. Define the Cramer-Rao lower bound (CRLB) for vector parameter estimation. Given the observations x[n] = A + Bn + w[n], $n = 0, 1, \dots, N - 1$ where w[n] is white Gaussian noise. Find the CRLB for the slope *B* and intercept *A*. [12]
- 2. Suppose x is a binary variable that assumes a value of 1 with probability a and a value of 0 with probability 1 a. The probability distribution of x can be described by $P(x) = (1 a)^{1-x}a^x$. Suppose we draw a random sample of N values x_1, x_2, \ldots, x_N . Find the Maximum Likelihood (ML) estimate of a. [12]
- 3. We observe a random sample $z(1), z(2), \ldots, z(N)$ of an *i.i.d* random variable z that is exponentially distributed with parameter θ .*i.e.*, $p(z(i)|\theta) = \theta \exp[-z(i)\theta]$) where $\theta \ge 0$ and $z(i) \ge 0$. Also, θ is a random variable with prior probability density function $p(\theta) = \theta \exp(-2\theta)$ where $\theta \ge 0$. Assume that the means and variances of z(i) and θ are known;
 - a) Determine the Maximum A Posteriori estimate, $\hat{\theta}_{MAP}(N)$.
 - b) Consider the sample mean of z(i). As *N* gets large, how does $\hat{\theta}_{MAP}(N)$ compare with the sample mean. [12]
- 4. Draw the structure of a Kalman filter based state estimation and prediction system clearly indicating the signal flow paths and associated matrices. Also write the associated expressions. [12]
- 5.a) Derive the decision metric used in Bayes' detector for the binary hypothesis testing problem.
- b) Consider a binary hypothesis testing problem. A signal of 5 volts may or may not be transmitted and is observed under AWGN. The noise samples have zero mean and unit variance. Cost associated with correct decisions are 0 and wrong decisions are 1. Also the *a priori* probabilities are $P_0 = P_1 = 0.5$. If 10 independent samples of the received signal are available, calculate the effective detection threshold, Probability of detection (P_D), Probability of Miss (P_M), and Probability of False Alarm (P_{FA}). [12]

Contd....2

::2::

- 6.a) Draw typical receiver operating characteristic curves and discuss the inferences which can be obtained from it.
- b) Under no signal condition only noise is received, while under the signal present condition, 1 volt plus additive noise is received. Let 50 samples are available at the receiver. The noise samples are Gaussian with zero mean and unit variance. Design a Neyman-Pearson detector for a constant false alarm probability of 0.1.
- 7. Consider a multiple hypothesis testing problem with three constant signals m_0 , m_1 and m_2 . The signals are embedded in *i.i.d* Gaussian noise ~ \aleph (0, σ^2) and N samples are available.

$$H_0 = y_n \sim \aleph (m_0, \sigma^2)$$

$$H_1 = y_n \sim \aleph (m_1, \sigma^2)$$

$$H_1 = y_n \sim \aleph (m_2, \sigma^2)$$

[12]

Where n = 0, 1, ..., N - 1 and $m_0 < m_1 < m_2$. $P_i = 1/3$, Costs associated with the decisions are $C_{ii} = 0$, for i = 0, 1, 2 and $C_{ij} = 1$ when $I \neq j$. Find appropriate detection thresholds for this problem so that the probability of error is minimized? [12]

- 8.a) Derive the likelihood ratio test metrics used in discrete-time correlator and analog correlator.
 - b) Show the equivalence between correlator and matched filter receiver. Also show how matched filters can be used for hypothesis testing problems. [12]

-IR: